Cyberinfrastructure Specialists

Group Members

- Jorge L. Díaz-Herrera, Facilitator
- Gurcharan Khanna, Facilitator
- Gregor von Laszewski
- Fred Videon
- Annuska Perkins
- Sharon Bryant
- George Tilson
- Jeremiah Parry-Hill
- Alexander Faisman
Recommendations

- Create an *Experimental Platform and Testbed* for developing state-of-the-art cyber environments to support D/HH STEM students, faculty, and other stakeholders.

 - Requirements gathering
 - Design process
 - Challenges

 - *We are NOT developing the ultimate application but providing the building blocks for others to experiment and build applications to fit their needs*
Experimental Platform to support D/HH Appl

Layer 4
D/HH Communication support environments and tools

Layer 3
Development Tools & Libraries

Layer 2
Grid Services & Middleware

Layer 1
Hardware

Domain-specific Cybertools (software)
Shared Cybertools (software)
Distributed Resources (computation, communication, storage, etc.)
Experimental Platform and Testbed

- Layer 1: existing
- Layer 2: existing
- **Layer 3: new**

 - *Focus on Quality-of-Service (QoS)*
 - *Focus on Quality-of-Experience (QoE)*

 - A combination of open source and proprietary building blocks
 - Remote services for DHH community provided by vendors (Adobe, MS, IBM, Sun, etc.)
 - Permanent admin and support staff
Requirements gathering

- Investigate how technology can assist problem diagnosis and resolution (e.g., workarounds to existing networking problems)

- Take a two-step development track:
 1. Technology for short-term deployment *(what can be done now)*
 2. Long-term work *(what may be possible in 5-10 years?)*
Requirements gathering (cont.)

1. Short-term activities *(what can be done now)*

- Document and improve the use case scenarios
- Explain the Everywhere, Anytime Education paradigm
- Use existing commodity technologies as part of demonstrations
- Develop guidelines for deployment
- Use *social computing* to automate discovery of groups of users and Cyberinfrastructure/services that they use
Requirements gathering (cont.)

2. Long-term *(what may be possible in 5-10 years?)*

- Build a scalable server-based host environment
- Build various clients that interface with the hosting service
- Hire permanent staff
- Build a community of practice
 - Prioritize needs and approaches
Design process

- Iterative design with lots of user involvement
 - User-level “programming” without writing code
- Diversity of scenarios and on-the-fly modification (e.g., widgets placements, feature/service selection)
- UI “smart” customization
 - Accessible by people with differing needs
 - Environment usable at any bandwidth
 - User configurable (machine-driven)
- Just-in-time and just-in-case: practice ahead of time with remote interpreter and other services
Challenges

- Platform independence
 - Technology agnostic, open source, cross platform
 - Bandwidth not evenly distributed: delivery would “scale” from cell-phone to video walls, to supercomputers

- Collection of content
 - Flexible domain taxonomy
 - Intellectual property (who is allowed to see the archives and for how long?)

- When technology fails, what happens?
 - Archiving and back-up plans
 - Administration of environment(s)
Challenges (cont.)

- Ad-hoc accessibility provision
 - it’s not just the classroom
 - Field work, chance conversations, labs, workplace, brown-bag lunch research meetings, etc.

- Universal design
 - Make provision available to ALL users (notes, captions, signs, speech output, etc.)
 - Crowdsourcing: if there is something wrong with, for example, archived captions, end users should be allowed to submit suggested edits for a “moderator” to review and approve.
Cyberinfrastructure Development

```
"create, deploy, & apply cyberinfrastructure in ways that empower all DHH users and allied education"
```

```
Cyber DHH environment
```

Computing & Information Sciences - Domain knowledge & requirements - DHH Cyber-Community

Summit to Create a Cyber-Community to Advance Deaf and Hard-of-Hearing Individuals in STEM (DHH Cyber-Community)

June 25-27, 2008
Collaboration environments

for multipoint teaching: unlimited, extensible, open, real-time interactive as well as asynchronous, high quality video, etc.

- Ensure effective design of environments
- High Performance Architecture: High bandwidth, Low latency, Advanced Protocols
- Authentication, authorization, service discovery, location sensing, mobile
- Real-time automatic captioning, Radio transmission (cochlear, hearing aid), Signing transmission hi-qual/3D
Approaches to support D/HH communities

- Develop approaches, methods and techniques to enable *exchange of information* among users
 - Identify key building blocks into a framework for d/hh computing environment
 - Develop and make accessible cybertools based on domain-specific vocabularies
 - Integrate multimedia solutions to facilitate interoperability across platforms
 - Supplement existing facilities and provide system integration, operation, and administration

- Support *workshops to test* different methods and technologies to analyze effectiveness of cybertools
Examples and Scenarios

- **Collaboration environments**
 - RIT collaboration grid: Cross platform
 - ConferenceXP
 - Adobe Connect Captioning Extension
 - Microsoft Office Live Meeting
 - IBM Hosted Speech Transcription Service (INTONATA)

- **Settings**
 - Academic
 - Workplace
RIT Collaboration Grid

12 “CyberPortals” connecting RIT communities on and off-campus with high quality life sized, persistent, public, audio and video

- 7 Colleges of RIT
- National Technical Institute for the Deaf
- Center for Integrated Manufacturing Studies
- Student Alumni Union
- Library
- High Tech Incubator
- President’s House
- Kosovo
- Croatia
- Dubai
ConferenceXP

- Platform for real-time high-quality multipoint conferencing
- Example Deployment: UW Professional Masters Program
- Key features of the platform
 - Extensibility
 - Archiving
- Challenges/Future Work
 - Customization for this domain
 - Network infrastructure needs
 - Technical support requirements
 - Not cross-platform
Adobe Connect

- Structured into “pods”
- Instructor sets the size and position of pods
- Favors a mode of communication in which one person is the presenter at any given time
- It is possible to conduct an entire meeting in text chat, but this is not the favored method for delivering primary course content
Microsoft Office Live Meeting

- **Accessibility Labs**
 - Adaptive UI optimized for specific person (layout & content)
 - Improving usability of assistive technology
 - Comm Types: ad-hoc, structured, mobile, across disabilities
 - Accessibility requirements for MS coom. products & dev. tools

- **Microsoft Research (MSR)**
 - Improving speech recognition
 - Translating information between all devices and display sizes
 - Recording experiences
 - Searching through large amounts of data
IBM Hosted Transcription Service

Equal access to information == meaning must be to be conveyed by any combination of modalities

IBM Hosted Transcription Service is currently focusing on Audio/Video/Text triad.
Scenarios

- **Academic settings**
 - Lecture-oriented classroom & seminar style
 - Synchronous & Asynchronous
 - Fixed & Mobile locality

- **Workplace settings**
 - Coops
 - Internships
 - Labs
Philosophical differences

○ What is a classroom?
 • static lecture room
 • classroom of the future is "everywhere"

○ "Everywhere, Anytime Education" Scenarios
 • Internships
 • Research almost always not conducted in a lecture room
 • Individual meetings, Small ad hoc research groups, Large and small group discussions
 • Brown-bag lunch research meetings