Integration of Experiential Learning to Develop Problem Solving Skills in Deaf and Hard of Hearing STEM Students

Wendy Dannels
Rochester Institute of Technology/
National Technical Institute for the Deaf

Matthew Marshall
Rochester Institute of Technology/
Kate Gleason College of Engineering

Andres Carrano
Auburn University

This material is based upon work supported by the National Science Foundation under Grant No. DUE-1141076. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Introduction

Rochester Institute of Technology

- KGCOE: The Toyota Production Systems Laboratory
- NTID: National Technical Institute for the Deaf

Objective

The objective of this work was to develop and evaluate a novel, experiential-based approach to teaching problem-solving skills to DHH students in STEM fields of study.
Motivation

- Some students who are deaf or hard of hearing (DHH) have been shown to struggle in the development of problem solving skills (Marschark and Everhart, 1999; Luckner and McNeill, 1994)

- This can limit some students’ success in pursuing post-secondary STEM degrees and careers.

- Often, DHH students do not possess the same level of conceptual knowledge as their hearing peers (Marschark et al, 2008).

- This limits the experience base that some DHH students may use as they solve complex and unfamiliar problems.

Background: The Toyota Production Systems Lab

Mission: to provide hands-on education in state-of-the-art production systems

Roots:
- Targeted skills and context
- Problem Solving
- Continuous improvement
- Technical communication
- Teamwork
A3 Problem Solving

PROBLEM SOLVING GUIDE

Theme: Reduce Blind Spots in Plastics

Area: Plastics

Start Date: 2/05

End Date: 7/05

Members:
- Matt B. (Captain)
- Charlie M., Kelly H., Stacey M.
- Elizabeth C., Heather M.

1. **Identify The Problem** (Clarity: Ideal & Current Situations, Visualize the Gap)
 - **Ideal:** 100% TMs feel safe when entering conveyance aisle.
 - **Gap:** 80% of TMs have a blind spot safety concern.
 - **Current:** 16 out of 20 TMs have a concern with blind spots when entering conveyance aisle (20% feel safe).

2. **Grasp The Current Situation** (Break Down, Narrow Focus, Go & See, Contain)
 - **Blind Spot Concerns by Location**:
 - N.E. Aisle: 28%
 - S.E. Aisle: 26%
 - Center Aisle: 29%
 - Back Aisle: 18%
 - Non-Specific: 8%

 Problem to Engage: Blind Spots at Column 4D-4

3. **Set A Target** (Do What, By Much by When?)
 - **Reduce Blind Spots at N.E. Aisle to 13% by 5/31/05.**

4. **Determine The Root Cause** (Brainstorm Causes, Verify as Fact by Asking Why)
 - **Method:**
 - Restricted area
 - Must push racks
 - Crossing area not marked
 - **Manner:**
 - No communication
 - B/P Conv can't see us
 - **Effort:**
 - Lack of communication between Assy Conv & B/P Conv
 - Lack of awareness between parties
 - Uninformed of caution areas
 - Caution areas not identified

 - **Activity Plan**
 - What
 - Who
 - April
 - May
 - June
 - 1. Mark Parts Xing Zone
 - Heather
 - 2. Mark Tugger Xing Zone
 - Rich, Charlie
 - 3. Install Sign
 - Matt, Matt
 - 4. Install Caution Light
 - Matt, Matt

6. **Implement Countermeasure** (Collect Data, Check & Communicate Progress)
 - Initial observation found Assy Conv taggers only adhered to honking zone 30% of the time (3 out of 10 cycles), but adherence improved after more thorough communication.
 - Initially B/P Conv TMs were not cancelling the light consistently after crossing, but this also improved after further communicating impact to Assy Conv taggers.

7. **Confirm Result** (Compare Results to Target, Evaluate Process for Repetability)
 - Initial target of 13% by 4D-4 concerns dropped, but other NE Aisle concerns increased due to heightened awareness through this activity.

8. **Standardize / Control** (Prevent Recurrence, Sustain, Yokoten, Start Again)
 - B/P Conv. Std Work updated 7/05.
 - Assy Conv. Std Work updated 7/05.
 - C/M yokoten to columns 4D-3 & 4D-5 planned for 8/05.
Our Approach

- Develop a set of laboratory experiences in which DHH students utilize an adapted A3 approach to solve “real world” problems presented in the TPS Lab

- Develop supporting material that is fully accessible to DHH students

- Implement this intervention in first-year NTID engineering studies classes over a two-year period

- Use a series of case studies to assess baseline and improvement in problem-solving skill using a case/control approach
Timeline

Intervention – occurs within semester

Module 1
- Classroom (lecture)
- Introduction to A3 approach
- Case study based on automotive supplier

Module 2
- Laboratory (hands-on, experiential)
- Warehouse case study
- First attempt at A3 development

Module 3A
- Laboratory (hands-on, experiential)
- Assembly Line case study
- Second attempt at A3 development

Module 3B
- Laboratory (hands-on, experiential)
- Assembly Line case study
- Third attempt at A3 development

Pre Test (beginning of semester)
Post Test (end of semester)
Follow-up #1 (six months)
Follow-up #2 (one year)
Summary of Adaptations

<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher as skilled communicator</td>
<td>Native ASL communicator as instructor</td>
</tr>
<tr>
<td>Instruction through primary language</td>
<td>Instruction in ASL before competence is assessed in English</td>
</tr>
<tr>
<td>Active learning</td>
<td>Laboratory-based (hands-on) instruction; A3 problem-solving requires synthesis and analysis</td>
</tr>
<tr>
<td>Visual organizers</td>
<td>Lab-based instruction and A3 process are highly visual; text-based materials presented on captioned/signed video</td>
</tr>
<tr>
<td>Authentic, problem-based instruction</td>
<td>Majority of instruction in industry-like laboratory environment; use of real-world case studies; group discussion</td>
</tr>
<tr>
<td>Use of technology</td>
<td>Tablet provides interactive, real time information access; fully captioned/signed videos</td>
</tr>
<tr>
<td>Specialized content vocabulary</td>
<td>Video-based glossary in both captioned English and ASL accessed through tablet; pre-teaching of specific vocabulary</td>
</tr>
<tr>
<td>Critical thinking</td>
<td>Provide step-by-step problem solving, gradually giving way to independent work and experimentation</td>
</tr>
<tr>
<td>Mediating textbooks</td>
<td>Scaffolding techniques to accommodate variability in reading levels (lower level reading materials, ASL/captioned video)</td>
</tr>
</tbody>
</table>

Intervention:

- Students participated in the TPS laboratory modules provided with instructional intervention using the A3.
- Students work in small groups, utilizing a tablet-based application of the Plan-Do-Check-Act cycle to solve problems.
Intervention:

- Students pose as “workers” in one of several manufacturing/warehousing scenarios and are presented with problems to solve as a team.

- By being part of the system, students quickly develop the content knowledge needed to address problems introduced as part of the lab activity.
Intervention:

- Screen shot of OneNote tutorial that students use as they are guided step-by-step through the problem-solving process
Evaluation:

- Four case studies were developed that presented a situation where several problems were described and enough information was provided to develop a root-cause analysis.

- For each case, students in groups of two or three answered questions in which they were required to demonstrate their approach to problem solving.

- A team of three faculty blindly evaluated each student work using a custom rubric.

- Data were analyzed by an independent research group at NTID, Center for Education Research Partnerships (CERP)

- The case studies were used as pre, post and follow-up instruments for assessment. Two control cohorts and two intervention cohorts were established in the experiment.
Problem-Solving Assessment Evaluation:

Students in intervention group experienced a 14.6% improvement from PRE to POST

Short-Term Impact of Intervention
Students in intervention group experienced a 11.8% improvement from PRE to POST, and maintained this six months later.

Problem-Solving Assessment Evaluation:

Students in intervention group maintained consistently higher scores than students in control group.

Long-Term Impact of Intervention
Key Findings and Conclusions

• Experiencing intervention was associated with short-term and long-term improvement in problem solving

• Approach may be adapted to other experiential activities in which student is immersed – not limited to specialized Toyota Production Systems Lab (e.g., legos, paper airplanes)

• Problem-solving materials will be made available online for other STEM educators to use/adapt
Questions?

This material is based upon work supported by the National Science Foundation under Grant No. DUE-1141076. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.